Go;g[e while (true) do;

how hard can it be to keep running?
O'Reilly OSCON 2013 Portland, Oregon

Caskey L. Dickson/SRE Google, Inc.
caskey@google.com




Google
The (simple) goal

Run FOOon S
(forever)

A service named FOO

servers
1..n

If you have a non-trivial number of servers
Keeping a given daemon running at all times on them is hard

Consider:
1 daemon x 300 servers x 6 months == 1 daemon x 1 server x 150 years




Google

Meet the foo service

e eats resources in a (usually) controlled fashion

e Has a binary (.../foo/bin/food) or three

e Runs as a specific user account "user foo"

e Has static configuration or resource data lib/foo/...

e Uses command line flags to manage the behavior

e Serves requests or processes data on a regular basis

e Internally packaged but might be 3rd party (OSS) upstream

e Periodic (controlled) releases and updates (weeks/months)




Google

Two halves of the problem

Getting the right thing running on Keeping it running that thing on

the servers the servers

e packaging e init

e configuration management e upstart

e upstream changes e cron

e distribution o at

e installation e bash

e upgrades e health checkers
e rollbacks (not downgrades!)




Google

KISS - What is the simplest possible solution?

1. Copy foo.tar.bz2 to every server (easy to implement using
2. Unpack into /usr/local/foo 'recipe’ style management
3. Add command-line to rc.local systems: e.g., ebuilds)
4. Reboot server
Pros Cons

e Dead simple e Manual everything
e Easy turn-up e No restart-on-crash
e Easy turn-down e No live-death detection
e Per-host customization

IS “easy””

* ease of use is illusory—manual customization is neither scalable nor repeatable




Google

Packaged KISS - Add the package manager to the mix

W=

Build foo.deb (or RPM, or ...)
post-inst scripts in foo.deb put init-scripts into place
Copy foo.deb to, and install on servers
Profit

Pros Cons
Leverages system e rollbacks can be tricky
package manager PM-fu
Easy turn-up e Global rollouts
Easy turn-down e Manual upgrades
Marries upgrade to e Implicit state
versions e Shared repo needed




Google

Private package repository with custom packages
(ignore the debian bias)

1. Set up a custom repo

2. Place your service's packages on it

3. Point your fleet at the appropriate version of the repo (testing,
stable)

4. Put this in cron.d:

0 1,13 * * * root sleep S(( $SRANDOM \% 21600 )); \
apt—-get -ggq update; \
apt—-get -gq upgrade &>/dev/null

After provisioning a server:
$ apt-get install foo




Google

Packages as configuration management
(an open debate)

Baking your configuration into packages has upsides and downsides.
One-size-fits-all? One-size-fits-none?

Bare (distro style) packages:

o package contains only the software components, configuration files
are pushed using puppet/cfengine/etc.
o introduces configuration/binary version sync problems

Staging packages:
o package with desired configs depends upon distro package

o remains 'dormant' or configured-off until activated via puppet or the
like

Full packages:

o package installs and configures for running immediately
o scary, but powerful




Google

Package management can be solved
(not the hard part)

Basic assumptions:

Some means to designate a non-distro package to run on fleet (e.
g., puppet, chef, cfengine, ...)

Multiple host tracks (unstable, testing, stable)

Package manager has pre- and post-install scripts that can be run
as part of the package management

package updates occur regularly (staggered) on fleet

mechanism to assess current package versions fleet-wide
OMGRCSBBAQ!




Google

Init scripts - getting it running with init(-alike)

/etec/rc.local:
/usr/bin/food -d

e Shared file, only use as a last-resort (i.e., never)

/etec/init.d/foo:
case $1 in...
start) food -d ;;
stop) pkill food ;;
restart) pkill food; food -d ;;
status) ...7? ;;

e Well known and supported
e Only really solves the start-at-boot problem, what if foo crashes?




Google

Init scripts—keeping it running with cron
(KISS approved)

/etc/cron.d/foo:
*/5 * * % * test -x /etc/init.d/foo && \
/etc/init.d/foo start
e Every five minutes, (try to) make it start
e Not terrible, better than nothing
e No way to admin-down a service, e.g., during upgrades
e \Workarounds are error-prone (chmod -x, forget to +x later)
e \What keeps cron running?
e atd has similar concerns
e restart storms - watch your startup dependencies!

e can trash pid files e.g., concurrent starts




Google

Init scripts—upstart is better, somewhat

/etec/init/foo.conf:

start on runlevel [2345]
stop on runlevel [!2345]
expect fork

respawn

exec /usr/bin/food -d

New(-ish) hotness

Will respawn on process crash - bonus!

Attempts to track forks DANGER

Has an expect SIGSTOP option, interesting

No way to contradict upstart's conception of process state
(upstart thinks your job is down when up == pain)

Implicit 10 restarts/5 seconds limit, then gives up forever!




Google

Flags: in init vs. launch-script

/etec/init/foo.conf:
exec /usr/bin/food -d

e Updating flags requires new conf file
e Complicates dev-testing
e Only allows for simple startup sequences
e Robustness demands a separate 'make sane and launch’ script
/etc/init/foo.conf:
exec /usr/bin/run-foo
/usr/bin/run-foo:
#!/bin/bash
if [[ -e ... 1]; then .
mkdir -p /var/lib/foo/...
/usr/bin/food -d




Google

Daemonization requires pidfiles
(this is bad)

"There are no useful checks that can be made with a
pidfile." — me

manipulating pid files

o read-modify-write cycle
o no locking facilities are used to assure correctness
o only valid if all handling is correct at all times

Fragile System: any system whose correct behavior relies upon all
actors perfect behavior at all times.

$ /etc/init.d/foo start # process backrounds itself
did food launch? is foo still running? How to check? What do | kill to
stop foo?




Google

Daemonization and why it is a bad idea
(under upstart)

"Is foo running still, does it need to be launched again?”

/etc/init/foo.conf:
expect fork
respawn
exec /usr/bin/food -d

This seems like a good idea, so long as food is a C/C++ program that
precisely implements daemonization using ONLY the single or
double-fork method (read: Fragile System).

What if we later add setup/maintenance/cleanup steps?




Google

Daemonization and why it is a bad idea
(under upstart)

/etec/init/foo.conf:
expect fork # DANGER!
respawn
exec /usr/bin/run-foo
/usr/bin/run-£foo:
#!/bin/bash
# First we do some sanity cleanups on system
if [[ -e ... 1]; then .
mkdir -p /var/lib/foo/...
# launch foo
/usr/bin/food -d

Daemonization breaks the only reliable control link available—process
ownership/parentage. We NEED to get a signal when the process
dies. Reliably. No, really, reliably.




Google

Correct process control under upstart
(STEP 1)

/etec/init/foo.conf:
respawn
exec /usr/bin/run-foo

/usr/bin/run-foo:
#!/bin/bash
# First we do some sanity cleanups on system
if [[ -e ... ]]1; then .
mkdir -p /var/lib/foo/...
# launch foo
exec /usr/bin/food --foreground

SAFE: process run-foo becomes the daemon, upstart retains control
over the actual process which is the daemon, forks done to prepare
environment are irrelevant. May be arbitrarily nested.




Google

Correct process control under upstart
(STEP 2)

Upstart will eventually give up launching your program if you let it.

Therefore we still need cron to tell upstart otherwise.

/etc/cron.d/foo:

*/5 * * *x * test -r /etc/init/foo.conf && \
initctl start foo

Now we are (finally) ahead of the game.

1. Upstart will continually try to launch our program.

2. Cron operation will be a NOOP if upstart still controls the child it
forked.

3. If upstart gives up, cron will tell it to get back to work.




Google

The method by which you start, stop
and restart your daemon is an interface
with a contract.

Be sure you understand the semantics
of that contract. Especially as it affects
upgrades and rollbacks.




Google

The contract: pkill -u ${role} food

To admin-stop your job:

1. chmod -r /etc/init/foo.conf
2. initctl stop foo

3. pkill -u ${role} food

Steps 1 of stop/start are done
during package removal/upgrade
for us.

To start your job:

1. chmod +r /etc/init/foo.conf
2. wait for cron *or*

3. initctl start foo

To restart your job:
1. pkill -u ${role} food
2. wait for upstart to relaunch




Google

The contract: run-foo

e run-foo is a script that launches foo

e It non-destructively prepares the runtime environment

e makes no assumptions as to prior state
start-time is recovery-time

e [fthe environment is sane, it execs the actual daemon in
foreground mode

e If not sane, log to stdout, sleep for a while, then exit abnormally

e Look to /var/log/upstart/foo.log for debugging




Google

upgrade flow in general
(remove the old package)

1. old-package pre-rm script

o ideally empty/nonexistent

o beware of unexpected restarts

o no split-operations
2. old package files removed

o magically prevents automatic restarts at this point forward
3. old-package post-rm script

o (try to) shut down this version by killing it

o asynchronous commands only

o beware of deadlocks and hangs—wait with care

o no split-operations




Google

upgrade flow in general
(install the new package)

1. new-package pre-inst script
o don't assume the pre/post rm scripts of the last package worked
o don't assume the previous version of the package was installed
o no split-operations
o Kkill existing versions just in case

2. new-package files emplaced
o you may get automatically started at any time without knowing it

(sanity checks help)

3. new-package post-inst script

o make sure the old version is gone/force a restart

o no split operations




Google

Health checks
pkill running job if check fails or times out

Periodic ACTIVE tests to verify service is responding in any way.

e simple as port-connect + banner checks
nc localhost 22 < /dev/null > /dev/null \
&& echo yep || echo nope

e complex as deep black-box end-to-end tests
curl -s localhost > /dev/null \
&& echo yep || echo nope

Not acceptable (no process interaction):
pgrep

kill -0

netstat

pidfile checks




Google

Issues that must be solved
(and how we’ve done it)

Regular updates (cron updates)

Safe rollbacks, rollback != downgrade (cron updates)
Changes to daemon flags (run-foo)

Changes to static configs (pkill on upgrade)
Changes to the binary (pkill on upgrade)

Version compatibility (combined configs + bins)
Restart on upgrade (upstart respawn)

Restart on exit (upstart respawn)

Restart on live death (health checks + pkill)
Liveness tests (health checks)

Quarantine (remove package, or /etc/init/foo.conf)




Google

Landmines

configuration management

rollbacks, never downgrades

hung package manager

ineffective fleet state information

hung daemons (insufficient health checks)
race conditions in scripts

virtualization overcommit




Google
The recipe (finally)

All state in revision control system--build packages from head
Complete package(s), bins + configs

Multiple repos (unstable/testing/stable)

Server fleet assigned to specific repos

Test fleet with real traffic

Automatic installation of promoted packages
Don't daemonize or use pidfiles (race conditions)
Start time is recovery time (constant death)
Reliable upgrades (pkill)

Local monitoring (upstart + cron/nc/wget)
Remote monitoring (your choice)

Kill to gain control




Google

external monitoring
system

Configuration
Management System

foo-bins.deb

foo-config.deb

prod fleet




Google The End

feedback welcome
caskey@google.com
join us
google.com/jobs




Google Extra Material

the case against pidfiles




Google

What are pidfiles good for?
Status: No pid file

Possible states:
e Daemon not running
e Daemon exited cleanly

e Daemon running but PID file removed
o errant shutdown script
o concurrent start of daemon

Action to take (desired state = running):
e assume down
e attempt start of daemon
(rely upon daemon to not doubly-run)
Action to take (desired state = stopped):
e hope it is down
e or attempt kill of daemon




Google

What are pidfiles good for?
Status: Pid file with invalid process id (kill -0 fails):

Possible states:
e Daemon not running
e Daemon exited w/o pid file cleanup
e Daemon running under different PID
o PID file overwritten by subsequent start attempt

o PID file creation failed
o concurrent start of daemon

Action to take (desired state = running):
e assume down
e attempt start of daemon
(rely upon daemon to not doubly-run)
Action to take (desired state = stopped):
e hope itis down
e or attempt kill of daemon




Google

What are pidfiles good for?
Status: Pid file with valid process id (kill -0 passes)

Possible states:
e Daemon not running (stale pid matches other process)
e Daemon exited w/o pid file cleanup (again stale pid match)

e Daemon running under different PID (stale pid match)
o PID file overwritten by subsequent start attempt
o PID file creation failed

e Daemon actually running

Action to take (desired state = running):

e hopeitisup

e or attempt start of daemon just in case

(rely upon daemon to not doubly-run)

Action to take (desired state = stopped):

e assume pid is the daemon

e attempt kill of that process




Google

What are pidfiles good for?
Status: ANY PIDFILE STATE

Pidfiles have no practical use in large scale system administration.
The give no actionable data to automated management scripts.

Code to create/maintain them or that relies on them is merely a source
of bugs rife with race conditions.

Action to take (desired state = running):
e or attempt start of daemon just in case
(rely upon daemon to not doubly-run)

Action to take (desired state = stopped):
e attempt kill of that process




